

Pre-Triad Conceptual Site Model (CSM)

Big-Picture

Pre-Triad CSM

New CSM

Triad Objectives

DMA

Systematic Planning

Dynamic Work Plan

Triad Accomplishment

Conclusion

- ROD RA(O)s
 - Minimize further migration
 - Prevent surface water discharge
 - Restore aquifer
- Source Areas Closed
- CVOCs flowed with groundwater in lower sand unit
- Flow to the south and southeast
- Lower sand atop clay/bedrock
- Bedrock Troughs control flow
- Wetlands associated with surface water

Pre-Triad CSM - Stratigraphy

Big-Picture

Stratigraphy

Clay

Hydro geology

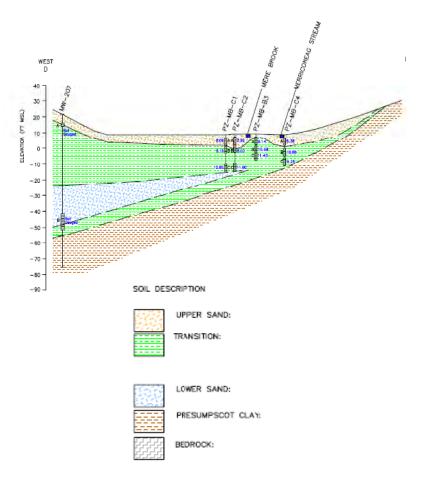
Plume Contours

New CSM

DMA

Systematic **Planning**

Dynamic Work Plan


Triad Accomplish-

Conclusion

Basis of CSM

RI identified 5 units

- Upper Sands
- Lower Sand
- Transition Sand
- Presumpscot Clay
- Bedrock

Pre-Triad CSM - Clay Layer

Big-Picture

Pre-Triad CSM

Stratigraphy

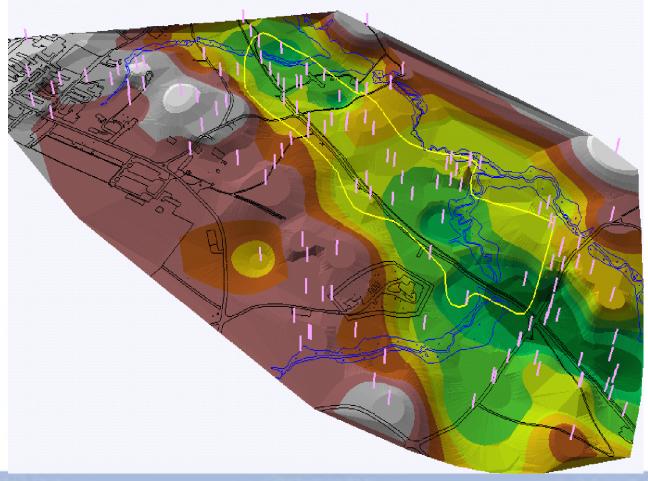
Clav

Hydro geology

Plume Contours

New CSM

DMA


Systematic Planning

Dynamic Work Plan

Triad Accomplishmont

Conclusion

Top of Clay Follows top of Bedrock

Vision Integrity

Results

Pre-Triad CSM Hydrogeology

Big-Picture

Pre-Triac CSM

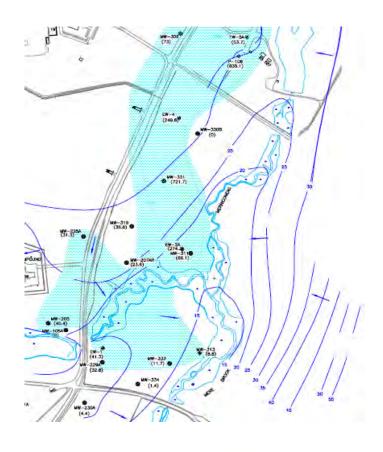
Stratigraphy

Clay

Hydro geology

Plume Contours

New CSM


DMA

Systematic Planning

Dynamic Work Plan

Triad Accomplishment Groundwater divides pour into this region

- Groundwater following top of clay in lower sands
- Groundwater follows local topography upper over burden
- Unconfined in western portion of site
- Lower sand throughout the source and plume
- Lower sands under confined conditions in wetlands
- Trough in bedrock influence flows
- Some CVOCs in clay depressions

Plume TCE Contours

Big-Picture

Pre-Triac CSM

Stratigraphy

Clay

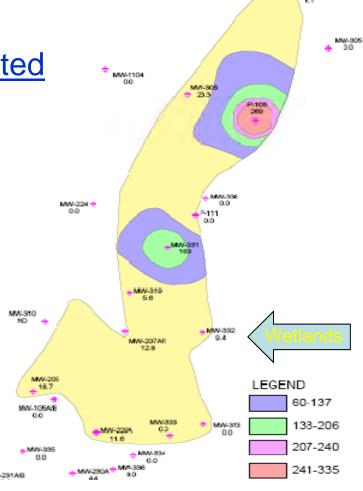
Hydro geology

Plume

New CSM

DMA

Systematic Planning


Dynamic Work Plan

Triad Accomplishment

Conclusion

Regions of Elevated CVOCs

-Wetlands not included in CSM

New CSM Needed

Big-Picture

Pre-Triad CSM

New CSM

DMA

Systematic Planning

Dynamic Work Plan

Triad Accomplishment

Conclusion

New Data Created

Uncertainty in old CMS

and Prompted need for

new CSM

- 1,4 Dioxane detected during LTM sampling (2004)
- CVOCs detected in surface water (2004/2005)
- Interagency Porewater Study honed in on the Wetlands as a region of high uncertainty in the CSM

CSM Refinement -Adaptation of Triad Approach

Results

Big-Picture

Pre-Triad CSM

New CSN

Adapt Triac Approach

Triad Objectives

Elements of Triad

DMA

Systematic Planning

Dynamic Work Plan

Triad Accomplishment

Conclusion

Why Adapt a Triad Approach?

- New CSM to be based upon older CSM as starting point for decision making and project DQOs
- Past Investigations showed high degree of cooperation between stakeholders
- Heterogeneous and dynamic hydrogeology required flexibility in field decision on data collection
- Large volume of data needed due to nature of site and to build confidence in new CSM

TRIAD Objectives

Results

Big-Picture

Pre-Triad CSM

New CSM

Adapt Triad Approach

Triad Objectives

Elements of Triad

DMA

Systematic Planning

Dynamic Work Plan

Triad Accomplishment

Conclusion

Objectives of Wetlands Investigation

- Determination of the extent of Eastern Plume migration to surface water within the vicinity of the Mere Brook/ Merriconeag Stream confluence and associated Floodplains.
- Refine understanding of localized subsurface geology and groundwater flow regime within the vicinity of Mere Brook and Merriconeag Stream confluence and associated floodplain.
- Establish Monitoring Network Locations